Poznań, Polska

Matematyka w technice

I stopnia inżynierskie
Język wykładowy: polski
Grupa kierunków: inżynieryjno-techniczne
System studiów: sta­cjo­nar­ne
Strona www uczelni: www.put.poznan.pl

Przykłady zawodów

Matematyka - zawody - matematyk
Zajmuje się badaniem ogólnych form przestrzennych i stosunków ilościowych, oraz wykorzystaniem wyników tych badań do opisu rzeczywistości: przyrody, procesów i zjawisk występujących w technice, medycynie, gospodarce i innych dziedzinach.
Prowadzi zajęcia dydaktyczne z różnych działów matematyki na wszystkich poziomach nauczania powyżej średniego, na różnych rodzajach studiów; prowadzi badania naukowe w swojej specjalności; przygotowuje książki i skrypty do prowadzonych wykładów i ćwiczeń; w zależności od posiadanego stopnia naukowego sprawuje opiekę nad młodymi pracownikami naukowymi oraz studentami wyższych lat studiów i doktorantami; bierze udział w życiu naukowym uczelni, towarzystw naukowych oraz występuje z referatami na kongresach, sympozjach i konferencjach naukowych.

Dodatkowe informacje

Matematyka
Matematyka (z łac. mathematicus, od gr. μαθηματικός mathēmatikós, od μαθηματ-, μαθημα mathēmat-, mathēma, „nauka, lekcja, poznanie”, od μανθάνειν manthánein, „uczyć się, dowiedzieć”; prawd. spokr. z goc. mundon, „baczyć, uważać”) – nauka dostarczająca narzędzi do otrzymywania ścisłych wniosków z przyjętych założeń, zatem dotycząca prawidłowości rozumowania. Ponieważ ścisłe założenia mogą dotyczyć najróżniejszych dziedzin myśli ludzkiej, a muszą być czynione w naukach ścisłych, technice a nawet w naukach humanistycznych, zakres matematyki jest szeroki i stale się powiększa.
Matematyka
Do poznania matematyki nie prowadzi królewska droga.
Autor: Euklides
Matematyka
Małżeństwo ze stanowiska matematycznego jest równaniem o dwóch niewiadomych.
Autor: Seweryn Eugeniusz Barbag
Matematyka
Bez nabytej na lekcjach matematyki kultury logicznego myślenia parlamentarzyści wciąż będą w ustawach pisać „i” zamiast „lub” albo odwrotnie. Bez elementarnej wiedzy matematycznej poważny dyskurs na tematy ekonomiczne czy socjologiczne wciąż będzie oparty na bałamutnych pojęciach średniej statystycznej, bo inne pojęcia, np. mediana, wariancja czy dystrybuanta będą poza zasięgiem intelektualnym tak polityków, jak dziennikarzy i obywateli.
Autor: Stanisław Bajtlik, Nie ma demokracji bez matematyki. Nie odejmować, ale dodawać, polityka.pl, 20 maja 2010

Aktualizacje proszę przesyłać na 

Polityka Prywatności